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For the evaluation of measurement uncertainty in measuring the conduction emission, in this
paper we propose a new model which uses mixed distribution. Evaluation of probability den-
sity function for the measurand has been done using Monte Carlo method and a modified
least-squares method (combined method). In addition, the number of data » and the number

of classes of histogram % which were used for simulation, were varied.
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INTRODUCTION

The Guide to the Expression of Uncertainty in
Measurement (GUM) [1] is the internationally ac-
cepted master document for the evaluation of uncer-
tainty. In addition, for measurement uncertainty as-
signing for linear or linearized models, the GUM
suggests one standard procedure which is known as
the GUM uncertainty framework (GUF) [2]. The
GUM Supplement 1 [2] is based on one general con-
cept of propagating the probability density functions
(PDF), where in order to obtain PDF for the
measurand using of the Monte Carlo method (MCM)
was suggested. Consequently, the law of propagation
of uncertainties is based on a construction of a linear
approximation of the model function [3].

One of the common problems that we face when
examining electromagnetic compatibility (EMC) is an
inconsistent approach to adjusting various specified or
standardized tests. Consequently, some of the stan-
dardized EMC measurements are included within the
precisely defined ways for evaluating uncertainty in
measurement [4]. EMC tests and measurements typi-
cally have large uncertainties of at least several deci-
bels [5]. Today, electronic equipment is considered to
be the critical project element of armament and mili-
tary equipment means and systems. So, for example,
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modern telecommunication devices are characterized,
on one hand, by the great power of ultra broadband
transmitters, and on the other, by sensitivity of receiv-
ers [6]. Many uncertainty sources in the domain of
EMC measurements were not studied well and need
further studying.

This paper presents a new model which uses
mixed distribution for uncertainty evaluation of con-
ducted emission measurement [7, 8]. Namely, evalua-
tion of PDF for the measurand (output quantity) has
been done using a MCM and a modified least-squares
method. Consequently, the MCM required numerical
calculation of approximate PDF values [7-10].

MODEL AND METHODS
Mixed distribution

As amodel for determining the density function
of a mixed distribution, two independent input quanti-
ties and one output quantity were taken (see fig. 1).

Consequently, each one of the input quantities is
determined by expectation which is equal to the given
estimate x;, as well as to corresponding standard devia-
tion which is equal to the given standard uncertainty
u(x;). The output quantity (measurand) Y'is determined
by the best evaluation y, which is assigned by the stan-
dard uncertainty u(y).



A. M. Kovacevi¢, et al.: Uncertainty Evaluation of the Conducted Emission ...
183 Nuclear Technology & Radiation Protection: Year 2013, Vol. 28, No. 2, pp. 182-190

xp, u(xy) :D
Y= X, Xy)

o v uy)
X5, U(X5) |::}

Figure 1. Illustration of the law of propagation of
uncertainty for a linear model

Probability density function of the output quan-
tity f{x) (density function of a mixed normal-normal
distribution) of two independent input quantities that
are determined by two normal PDF is given with eq. (1)

J)=¢fi () +(1-e)f(x), 0<e<l ()
Consequently, probability density functions for

the input quantities, f,(x) and f,(x), are given by eqgs.
(2) and (3), respectively
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where m; and s; are the parameters that represent the
mean and standard deviation of the first normal distri-
bution, respectively, and m; and s, — the parameters
that represent the mean and standard deviation of the
second normal distribution. & is the mixed coefficient
of'these distributions which indicates the proportion of
the first distribution in the mixed distribution. The
value of this coefficient is an interval from 0 to 1,
€ € (0, 1), so that the proportion of the second distribu-
tion in the mixed distribution equals 1 —¢.

In the fig. 2 the propagation of distributions for
two independent input quantities assigned by the nor-
mal distributions are illustrated.

The mixed normal-normal distribution function
for the output quantity, F(x), is given with eq. (4)
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Figure 2. Illustration of the propagation of distributions

F(x)=eF,(x)+(1-e)F,(x), 0<e<l (4)

Consequently, distribution functions for the in-
put quantities, F,(x) and F,(x), are given by egs. (5)
and (6), respectively
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Pseudorandom numbers that belong to the first
and the second normal distribution are determined by
the egs. (7) and (8), respectively

xXp=m +su;, i=12,... N, (7
_x; =m, +S21/l‘;- , j:l,2,...,N2 (8)

where N, and N, are the pseudorandom numbers total
of the first and the second normal distribution, respec-
tively, r;, 7; —the pseudorandom numbers, 7;, 7; € (0, 1),
and u;,u’;,— the lower quantiles of standardized nor-
mal distribution, N(0, 1).

The lower quantile of standardized normal dis-
tribution, u}, that has the mean equal to 0 and the stan-
dard deviation equal to 1, it is determined by generat-
ing the pseudorandom number »; € (0, 1), which
represents the lower quantum s, = F, (u} ), and then the
appropriate value for u} is determined. For determin-
ing the values for u; special subprogram was used
here, and they can be found in statistic tables, i. e. the
inverse function of standardized normal distribution
[11].

The lower quantile of standardized normal dis-
tribution, u’J , 1s obtained in an identical way using the
pseudorandom number r; € (0, 1), which represents
the lower quantum 7; = F, (u’;).

When the obtained values of pseudorandom
numbers x; and xf/- are mixed, c. 1. egs. (7) and (8), a
mixed normal-normal distribution which has n values
(n — pseudorandom numbers total of the mixed distri-
bution, n = N, + N,) is obtained.

Density function of a mixed normal-rectangular
distribution is given with the eq. (1), and the appropri-
ate probability density functions for the input quanti-
ties, f1(x) and f,(x), are given by egs. (9) and (10), re-
spectively

1 1(x—m 2
fl(x)—smexp[—z( S j :l )
—0 <X <00, 5> 0

fr(x)= ! , as<x<b, b>a (10)
b—-a
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where m and s is the parameters that represent the
mean and standard deviation of the normal distribu-
tion, respectively, and a and b are the parameters that
represent lower and upper limits of a rectangular dis-
tribution.

As in the previous case, mixed normal-rectangu-
lar distribution function, F(x), is given by eq. (4). Con-
sequently, distribution functions for the input quanti-
ties, F';(xx) and F,(x), are given by egs. (11) and (12),
respectively

1% 1 x-m)
Fi(x)=—— |exp —(] 11
! S\/2TC,'[° {2 s (n
—o < x <400, §>0

Fy(x)=—2———9  g<x<b, b>a (12)
b—a b-a

Pseudorandom numbers that belong to the first
normal distribution and the second rectangular distri-
bution are determined by eqgs. (13) and (14), respec-
tively

Xi=m+su;, i=12,..,N, (13)
X, =a+(b-a)y;, j=12,.,N, (14)

When the obtained values of pseudorandom
numbers x; and x’; are mixed, c. f. eqs. (13) and (14), a
mixed normal-rectangular distribution which has n
values (n — pseudorandom numbers total of the mixed
distribution, n = N| + N,) is obtained.

Density function of a mixed normal-triangular
distribution is given by eq. (1), and the corresponding
probability density functions for the input quantities,
f1(x) and f5(x), are given by egs. (15) and (16), respec-
tively

1 1(x-mY
fl()‘)‘sme"p{‘z[s] ] (15)

—00 < X <400, 5>0
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2 4(b—x)’ c<x<b, (16)

(b-a)’

where m and s are the parameters which represent the
mean and standard deviation of the normal distribu-
tion, respectively, @ and b — the parameters which rep-
resent the lower and upper limits of a symmetric trian-
gular distribution, and ¢ = (a + b)/2 is the parameter
mode of the symmetric triangular distribution.

Mixed normal-triangular distribution function,
F(x),is given by eq. (4). Consequently, the distribution
functions for the input quantities, F;(x) and F,(x), are
given by egs. (17) and (18), respectively,

P =L fexp J(Hsz
! sV 21 S 2 s (17)

—o < x <400, §>0

2(bx—a>22, cxge,
_] (b-a)
Fy(x)=
1_M,c<x£b, (18)
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Pseudorandom numbers that belong to the first
normal distribution and the second triangular distribu-
tion are determined in the eqs. (19) and (20), respec-
tively

Xp=m+su;, i=12,..,N, (19)

T
a+(b-1) > 0<r; <05,
X. =
J [ (20)
b—(b-a) 5 05<r; <1,

j:1,2,...,N2

When the obtained values of pseudorandom
numbers x;and x’j are mixed (cf egs. (19) and (20)), a
mixed normal- triangular distribution which has » val-
ues (n — pseudorandom numbers total of the mixed dis-
tribution, n = N| + N,) is obtained.

Point estimates parameters of
a mixed distribution

Point estimates parameters of the probability
density function for the output quantity (density func-
tion of a mixed distribution) are obtained by the com-
bined method which consists of the MCM and the
modified least-squares method [7, 8]. Consequently,
the MCM can be used to approximate the PDF for the
output quantity [12-16].

Also, point estimates parameters of density
function of a mixed distribution can be obtained in the
analytical procedure, but it is more complicated, and
sometimes difficult to execute.

Point estimates parameters of density function of
a mixed normal-normal distribution are determined
using egs. (21)-(24)

iy =105x iy +095(X e = i Vit i,
i=12,...,N (21)
S =0ls+ 1257, i=1,2,...,N (22)

ﬁ’lzj =105 iy +0.95(X iy =X i Fin2 5

j=1,2...,N @)

§p; =01s+125sr, ; j=12...N  (24)
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where X, and X, are the minimum and maximum val-
ues which were taken by the random variable x of a
mixed distribution, respectively, s is the empirical stan-
dard deviation of a mixed distribution, N— the total num-
ber of trials (iterations), 7,, .; 75, ;> 1, 515, € (0,1)—the
pseudorandom numbers, respectively.
Mixed coefficient is determined using eq. (25)

8[ :’:E;l’ 121,2,...,N (25)

where 7,.; € (0, 1)is the pseudorandom number.

Point estimates parameters expressions of mixed
distributions, eqs. (21)-(25), are obtained by experi-
mental and numerical calculations, in order to obtain
more realistic intervals for the parameters of distribu-
tion, and corresponding to the real situation.

The procedure of determining point estimates
parameters of density function of a mixed normal-nor-
mal distribution consists of several steps.

First, one determines minimum and maximum
values, x,.;, and x,,,., which were taken by the random
variable x of a mixed normal-normal distribution c. f.
eqs. (7) and (8), and then, according to the generated
pseudorandom numbers 7, . 75 ;.7 .51y, ;- and 7.,
respectively, which belong to the interval (0, 1) and us-
ing egs. (21)-(25), the i-th, j-th, and /-th values are de-
termined for these parameters. These values are put in
eqs. (1)-(3), and function values of a mixed nor-
mal-normal distribution, flx;) — estimated density
function of mixed normal-normal distribution, are de-
termined for every value of random variable x which
belongs to midpoint of each class histogram. If histo-
gram has £ classes, then there are k£ values of this den-
sity function of a mixed distribution. Also, the empiri-
cal values of this function are determined for each one
of these classes using eq. (26)

n:
f :—2, j=12...k (26)

n
where n; is the number of values which fall under j-th
class of histogram, n — the total number of values
which were taken by the random variable x, and / — the
class width of histogram. The function f; in eq. (26) is
the empirical density function of mixed normal-nor-
mal distribution that describes the histogram of ran-
dom variable x. Class width of histogram / is deter-
mined according to eq. (27)
X max ~ X min
h f 27
The number of classes of histogram & are deter-
mined according to egs. (28)-(30), respectively,

ky =~/n (28)
ky =1+ % Jn (29)

ky =[1+33log, n] (30)

Consequently, thatk;, i=1, 2, 3, is taken as an in-
teger value [11].

When the midpoint of each class histogram, x;,
values f;and f(x;) are determined, then one determines
the sum of the squared deviations of these functions
according to classes, using the eq. (31)

k
S;=2lf;)- /1 i=12...N (1)
j=1

where N is the total number of trials (iterations).

When the first value of the S| sum is determined,
then for the second generated pseudorandom numbers
FosiTssio Ty o Ty ;7 @0A 7., respectively, the same pro-
cedure determines the parameters of the density func-
tion of mixed normal-normal distribution and the sum
S,, and then, the values of the sums are compared. The
parameters of density function of a mixed normal-nor-
mal distribution, are determined in this way randomly,
the ones retained are those in which the minor sum of
the squared deviations of these functions is obtained.
The procedure continues and the new sum S is deter-
mined, and the parameters with which this sum is the
least, are retained. The procedure must be repeated
from 10° to 10° times (a value of N), and even more.

The procedure for determining point estimates
parameters of density function of a mixed nor-
mal-rectangular distribution and a mixed normal-tri-
angular distribution is described in the previous pro-
cedure which refers to density function of a mixed
normal-normal distribution [7, 8].

EVALUATION OF MEASUREMENT
UNCERTAINTY

Measurement model

This paper observes conducted emissions mea-
surements in power leads of military telecommunica-
tion devices in Faraday cage according to the method
CE102 from the standard MIL-STD-461E [17].

For determining of the measurand value, the
standardized measurement method is used [17]. Con-
sequently, the possibility of variations of obtained
measurand values becomes smaller, which influences
the reducing of measurement uncertainty.

Equation model for the evaluation of the Mea-
surement Instrumentation Uncertainty — MIU is given
in [18], in the eq. (32)

V=V,+L,+ Loy +6Vg, +5Vpa +5Vpr +
+O8F.,. +8Z+8M (32)

step

Equation (32) represents one purely additive lin-
ear model, whose terms are independent. Information
about terms of an expression in the model equation is
given in tab. 1. Measurement uncertainty comprises,
in general, many components. Some of these may be
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Table 1. Uncertainty budget according to the GUM for the conducted emission measurements

Estimate X; (x;) Standard Sensitivity Contribution to the
Input tit X; s . rtai : tandard taint
fput quantity Value [dB] | Probability distribution function u;l&?) [aégt]y coefficient ¢;° anui?;) Er;?;(rxf;m Y
Receive reading V. 40.1 Rectangular &, = 1.732 0.058 1 0.058
LISN-receiver -~
attenuation L. +0.1 Normal k, = 2.000 0.050 1 0.050
LISN voltage divisi
fotor g VIO 1o +0.2 Normal &, = 2.000 0.100 I 0.100
Receiver sine wave _
voltage SV +1.0 Normal k, = 2.000 0.500 1 0.500
Receiver pulse _
amplitude response Vpa +2.0 Rectangular k, = 1.732 1.155 1 1.155
Receiver pulse
repetition rate Ve +2.0 Rectangular k, = 1.732 1.155 1 1.155
response
Frequency step error | §F ., +0.0 Rectangular &k, = 1.732 0.000 1 0.000
LISN impedance YA t%gg Triangular k, = 2.449 1.082 1 1.082
LISN-receiver +0.676 —
mismatch oM ~0.734 U-shaped k, = 1.414 —0.519 1 -0.519

evaluated by Type A evaluation of measurement un-
certainty from the statistical distribution of the quan-
tity values from series of measurements and can be
characterized by standard deviations. The other com-
ponents, which may be evaluated by Type B evalua-
tion of measurement uncertainty, can also be charac-
terized by standard deviations, evaluated from
probability density functions based on experience or
other information.

Values of input quantities

Table 1 presents uncertainty budget, a Type B
evaluation for the case of conducted emission mea-
surements. The given data are obtained from the man-
ufacturer's specifications and calibration certificates,
and they are used for the evaluation of the Measure-
ment Instrumentation Uncertainty, according to the
ISO-GUM [1].

This also constitutes Type A evaluation, but this
paper will not consider the contribution of type A eval-
uation.

The standard uncertainty u(x;) is calculated by
dividing the value of the uncertainty associated with x;
by the coverage factor k,, whose value depends on the
choice of PDF and confidence level which is associ-
ated to the given value.

Evaluation of the measurement
instrumentation uncertainty

The previous section presents the uncertainty
budget according to the GUM for the case of con-
ducted emission measurement according to the
method CE102 from the standard MIL-STD-461E
[17]. Consequently, the model equation for the evalua-

tion of the MIU is given with eq. (32). The MCM and
the modified least-squares method (combined
method) are applied in three cases for two independent
input quantities from the given expression. Namely,
the combined method is used for the evaluation of
probability density function for the output quantity
(mixed distribution) according to probability density
function from two independent input quantities, and i.
e.: two independent input quantities assigned by the
normal distributions, two independent input quantities
where the first quantity is assigned a normal distribu-
tion and the second is assigned a rectangular distribu-
tion, two independent input quantities where the first
quantity is assigned a normal distribution and the sec-
ond is assigned a triangular distribution [7-10].

The Monte Carlo simulations for obtaining
mixed distributions are done by the procedure which
was described in the previous sections. In addition, the
number of classes of histogram k;, i = 1, 2, 3, which
was used for simulation is varied and the values are
used from tab. 1. A value of N, the total number of tri-
als was 10°. The number of data which was used for
simulation is » = 5000. Risk conformity was a = 0.05,
that is the confidence level (1 —a) was 0.95. One more
data that is important for our simulation was the mixed
coefficient & which was 0.5. The results obtained by
the combined method are compared to the correspond-
ing results when applying the GUM.

In figs. 3-5 a mixed normal-normal distribution
(the first example) is shown. In addition, the estimated
values are x; = x, = 0 dB, and standard uncertainties
u(x;) = 0.05 dB and u(x,) = 0.1 dB, respectively, (see
tab. 1).

It is noticeable that the estimated curve fitting
(line 2) in histogram (line 3) is very good, regardless
of the choice of ; (the number of histogram classes),
which indicates that the unknown parameters of this
distribution are estimated well. It should be men-
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Figure 3. Mixed normal-normal distribution obtained by
the combined method and GUM, respectively.

The number of classes of histogram is k; and the number
of data which was used for simulation is » = 5000

7.637080
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5.727795 | Sl TR )]

3.818530

1.909265
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Figure 4. Mixed normal-normal distribution obtained by
the combined method and GUM, respectively.

The number of classes of histogram is &, and the number
of data which was used for simulation is » = 5000
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4029936

2.014968

¥ h
‘|| b |

-0.34 -0.18 -0.01 0.15 x 032
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Figure 5. Mixed normal-normal distribution obtained by
the combined method and GUM, respectively.

The number of classes of histogram is &, and the number
of data which was used for simulation is n = 5000

tioned, that coming of the curve through the
mid-point of each class histogram is considered to be
the best fitting. Also, it is evident that the estimated
curve (line 2) differs slightly from the theoretical
curve (line 1). Consequently, the theoretical curve
represents the results obtained according to the
GUM. This difference was the evaluation result of
the mixed distribution parameters (whose values are
pseudorandom) and the number N of iterations (the
total number of trials).
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f(x) Theoretical curve
Estimated curve
[Ilgcelt sl Empirical curve

0.328663

0.164332

-3.00 -1.50 0.00 1.50 3.00
X
Probability density function

Figure 6. Mixed normal-rectangular distribution ob-
tained by the combined method and GUM, respectively.
The number of classes of histogram is 43 and the number
of data which was used for simulation is » = 5000
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\ _.
A
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Figure 7. Mixed normal-rectangular distribution ob-
tained by the combined method and GUM, respectively.
The number of classes of histogram is &, and the number
of data which was used for simulation is n = 5000
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0.360055

0.180028
/S —=mn || | |I Arnrn
M (I
-2.01 -1.01 0.00 1.00 2.00
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Figure 8. Mixed normal-rectangular distribution ob-
tained by the combined method and GUM, respectively.
The number of classes of histogram is &; and the number
of data which was used for simulation is n = 5000

In figs. 6-8 a mixed normal-rectangular distribu-
tion (the second example) is shown. In addition, the
estimated values are x; = x, = 0 dB, and standard un-
certainties u(x;) = 0.5 dB and u(x,) =1.155 dB, respec-
tively, (see tab. 1).

It is noticeable that fitting of the estimated curve
(line 2) in histogram (line 3) is very well and does not
deviate a lot from the theoretical curve (line 1), regard-
less of the choice of ;. This difference was the result of
evaluation of parameters of the mixed distribution
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(whose values are pseudorandom) and the number N of
iterations.

In figs. 9-11 a mixed normal-triangular distribu-
tion (the third example) is shown. In addition, the esti-
mated values are x; = 0 dB and x, =—0.05 dB, and the
standard uncertainties u(x;) = 0.5 dB and u(x,) =
= 1.082 dB, respectively (see tab. 1).

It is noticeable that fitting of the estimated curve
in a histogram is very well and does not deviate a lot
from the theoretical curve, regardless of the choice ;.

0.699329

¢ Theoretical curve (1)
™ Estimated curve  (2)
[oX:PZELYM Empirical curve  (3)

0.349665

0.174832

-3.00 -1.50 0.00 1.50 . 3.00
Probability density function

Figure 9. Mixed normal-triangular distribution ob-
tained by the combined method and GUM, respectively.
The number of classes of histogram is &3 and the number
of data which was used for simulation is » = 5000

0.732204
Theoretical curve (1)
Estimated curve  (2)
WPtilx] Empirical curve  (3)

()

0.366102

0.183051

Q
-2.69 -1.37 -0.05 1.27 2.58
Probability density function

Figure 10. Mixed normal-triangular distribution ob-
tained by the combined method and GUM, respectively.
The number of classes of histogram is &, and the number
of data which was used for simulation is » = 5000

0.770391

f Theoretical curve (1)
) Estimated curve (2)

[Weygast Empirical curve  (3) [] |'l/
-

-0

Figure 11. Mixed normal-triangular distribution ob-

tained by the combined method and GUM, respectively.

The number of classes of histogram is &, and the number
of data which was used for simulation is » = 5000

0.385196

0.192598

1
h
| “‘
‘"Mﬂﬁlﬁm
.05 1.27 2.58
X
Probability density function

This difference was the result of evaluation of parame-
ters of the mixed distribution (whose values are
pseudorandom) and the number N of iterations.

In the figs. 12-14 a mixed normal-normal distri-
bution where the number of data which was used for
simulation is n = 10000 is shown. In addition, the esti-
mated values are x; = x, = 0 dB, and standard uncer-
tainties u(x;) = 0.05 dB and u(x,) = 0.1 dB, respec-
tively (see the first example).

7.347912

F(x) Theoretical curve (1)
Estimated curve (2)
LEANEZY  Empirical curve (3)

Probability density function

Figure 12. Mixed normal-normal distribution obtained
by the combined method and GUM, respectively. The
number of classes of histogram is k; and the number of
data which was used for simulation is » = 10000
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f(x) Theoretical curve (1)
Estimated curve  (2)
EReplveive]  Empirical curve  (3)

3.780206

1.890103

-0.04 015 034

Probability density function X

Q
-0.41

Figure 13. Mixed normal-normal distribution obtained
by the combined method and GUM, respectively. The
number of classes of histogram is &, and the number of
data which was used for simulation is » = 10000
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CRERC2EEY  Empirical curve
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1.965875

] [
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Figure 14. Mixed normal-normal distribution obtained
by the combined method and GUM, respectively. The
number of classes of histogram is &, and the number of
data which was used for simulation is » = 10000
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As in the first example, it is shown that fitting of
the estimated curve in histogram (the empirical curve)
is very good and differs slightly from the theoretical
curve, regardless of the choice k; and the increasing
number of data n. This difference was the result of
evaluation of parameters of the mixed distribution
(whose values are pseudorandom) and the number N
of iterations.

CONCLUSIONS

In this paper the Monte Carlo method (MCM)
and the modified least-squares method, are presented
for the estimate of the output quantity (measurand),
which is interrelating with two input quantities. As a
representative equation model for the evaluation, of
the Measurement Instrumentation Uncertainty is used,
and itis also used for the conducted emission measure-
ment according to the method CE102 from the stan-
dard MIL-STD-461E. The MCM and the modified
least-squares method (combined method) are applied
in three cases, for two independent input quantities,
which were associated with PDF. In addition, the num-
ber of data # and the number of classes of histogram £,
which were used for simulation, are varied. It was
shown that the combined method gives valid results
with regard to physical accuracy of the presented
model, which refers to the input and output quantities.
Namely, applying the combined method produces a
mixed distribution, i. e. PDF for the output quantity,
which fits well (the estimated curve) in histograms and
differs slightly from the produced results according to
the GUM (the theoretical curve), regardless to the
choice of k and n.
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Anekcanpap M. KOBAYEBWH, [dejan . IECIIOTOBUR, 3opan A. PAJOBUh
Kosmbka b. CTAHKOBHWh, Ana B. KOBAYEBUh, Ypom [I. KOBAYEBUh

INPOLIEHA MEPHE HECUI'YPHOCTMU IIPU MEPEBY KOHAYKIIMOHE EMUCHUIJE

Y pany je mpeiiosKeH jefaH HOBH MOJEJ 3a IPOICHY MEpHE HECHTYPHOCTH NPH MEpemy
KOHJIYKIIMOHE eMICHje, KOju KOPUCTH MEIIOBUTY pacmofeiy. Monre Kapno meroma u MoaucpukoBana
MeTofla HajMamux KBajgpaTa (KOMOMHOBaHa MeTofa) KopuinheHe Cy 3a MpoleHY (PYHKIHUje T'yCTUHE
pacnioene mepHe BennunHe. [Ipu Tome, Bapupas je 6poj mofgaTaka n u 6poj Kiiaca Xucrorpama K KOju cy
KopunrheHu 3a cuMyJaImjy.

Kmwyune pequ: mepHa HecuzZypHOCill, KOHOYKUUOHA eMucuja, (pyHKyuja Zyciliuke paciiooene, Meulo8uilia
paciiooeaa, MOOUGUKOBAHA MeTiO0a Hajmarux Keadpaitia, Mouitie Kapao meitiooa




